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Abstract

Recognition of human activities is an important task due
to its far-reaching applications such as healthcare system,
context-aware applications, and security monitoring. Recent-
ly, WiFi based human activity recognition (HAR) is becom-
ing ubiquitous due to its non-invasiveness. Existing WiFi-
based HAR methods regard WiFi signals as a temporal se-
quence of channel state information (CSI), and employ deep
sequential models (e.g., RNN, LSTM) to automatically cap-
ture channel-over-time features. Although being remarkably
effective, they suffer from two major drawbacks. Firstly, the
granularity of a single temporal point is blindly elementary
for representing meaningful CSI patterns. Secondly, the time-
over-channel features are also important, and could be a natu-
ral data augmentation. To address the drawbacks, we propose
a novel Two-stream Convolution Augmented Human Activi-
ty Transformer (THAT) model. Our model proposes to uti-
lize a two-stream structure to capture both time-over-channel
and channel-over-time features, and use the multi-scale con-
volution augmented transformer to capture range-based pat-
terns. Extensive experiments on four real experiment datasets
demonstrate that our model outperforms state-of-the-art mod-
els in terms of both effectiveness and efficiency. The code is
released at https://github.com/windofshadow/THAT.

Introduction
Human activity recognition (HAR) aims to recognize vari-
ous human activities such as walking, sitting, falling down,
etc. It is widely used in many fields such as healthcare
system (Zheng et al. 2017; Jobanputra, Bavishi, and Doshi
2019), smart building solutions (Pu et al. 2013), and Internet
of Things (IoT) applications. For examples, elderly people
monitoring (Jobanputra, Bavishi, and Doshi 2019), energy-
efficiency system for smart buildings (Pu et al. 2013), daily
activity recognition for robot-assisted living (Zhu and Sheng
2011). Other applications include fall detection (Wang, Wu,
and Ni 2017), security monitoring (Zheng et al. 2017), res-
cue systems (Grzonka et al. 2010), etc.

Due to its importance, numerous research efforts are de-
voted to HAR in recent years, mostly rely on various sensors
or dedicated devices, such as cameras (Aggarwal and Ryoo
2011), wearable sensors (Ertin et al. 2011), and radars (Lien
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et al. 2016). However, these methods commonly require lim-
ited working conditions and special treatments on deploy-
ment and commissioning. E.g., cameras have limited view-
ing angles, illumination requirement, and needs line-of-sight
(LOS) condition (no fog, smoke, or other obstacles). The re-
liance on dedicated devices and limited working conditions
generally leads to high costs yet low efficacy, which hinders
their applications from daily-life scenes.

Recently, the research community has sought using off-
the-shelf devices to recognize human activities in a “device-
free” manner, primarily based on the WiFi, an ubiquitously
available device. WiFi-based solutions build upon the prin-
ciple that human actions between WiFi transmitters and re-
ceivers (as shown in Fig. 1) will incur subtle yet unique vari-
ations (a.k.a. multi-path and the fading effect) on WiFi sig-
nals (Wang et al. 2015). There are two kinds of common-
ly used WiFi signal data: received signal strength (RSS)
and channel state information (CSI). Due to being finer-
grained and containing abundant environment information
that would benefit HAR task, CSI becomes the de-facto s-
tandard. However, different from RSS where the patterns are
simple and explicit, in CSI, the patterns are often implicit
because they underneath the large amount of raw data (90
times more than RSS data), leading to a high noise-feature
ratio. Thus, it is hard to obtain satisfactory results solely re-
lying on extracting simple yet effective patterns.

Figure 1: A human with different activities brings unique
multi-path reflections and refractions in wireless signals
from a transmitter (TX) to a receiver (RX).

Observing this, pioneer research efforts have sought
for various deep learning (DL) techniques, such as CN-
N (Chowdhury 2018), RNN (Yousefi et al. 2017), and L-
STM (Chen et al. 2018), to automatically extract informa-
tive features. Despite being effective, existing DL-based so-
lutions share some common drawbacks, which hinder them
from further performance improvement, as listed below:
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i) Order-unawareness. Spatial models such as CNN sim-
ply treat CSI data as an image and use two-dimensional ker-
nels to extract spatial patterns. However, different from im-
ages where semantics of both dimensions are identical (i.e.,
refers to spatial positions), for CSI data, the meanings of the
two dimensions are completely different (i.e., refers to tem-
poral time-stamp and channel state, respectively). Simply
treating them equally will yield inferior features. Moreover,
CNN does not preserve order information, so it is unable to
effectively distinguishing order-sensitive activities such as
sit-down and stand up.

ii) Neglect the temporal features extracted along the chan-
nel dimension (time-over-channel). Sequential models such
as RNN and LSTM regard CSI data as a temporal sequence.
They are aware of orders and able to capture channel fea-
tures extracted along the temporal dimension (channel-over-
time). Unfortunately, they neglect the time-over-channel fea-
tures, which are shown to be effective in distinguishing ac-
tions with similar motions but different body postures, such
as sit down and lie down, since the time-over-channel fea-
tures are more sensitive to density changes as different chan-
nel frequency has different penetration on human bodies.

iii) Granularity is too small. Existing models take every
point as the meaningful unit to generate features. The point-
level granularity is too small to see the whole picture, since
a meaningful pattern usually appears in a continuous range
rather than a single point due to the continuity1 of CSI data.

To address the above issues, we propose a sophisticat-
ed yet highly effective Two-stream Convolution Augment-
ed Human Activity Transformer (THAT) model to exert
the advances of deep learning techniques on HAR tasks.
Our model presents a two-tower structure, each tower is in
charge of the channel stream or the temporal stream to ex-
tract both time-over-channel and channel-over-time features.
The core component of our model is the Multi-scale Con-
volution Augmented Transformer (MCAT), which adopts a
residual-connected multi-head self-attention to effectively
generate hidden representations and a multi-scale convo-
lution block to capture range-based patterns. To make the
model be order-sensitive, we propose a Gaussian range en-
coding to preserve the positional information of the CSI da-
ta. Besides, owing to the parallel nature of self-attention
and convolution block, our model is also efficient enough
to support real-time recognition. The experimental result-
s show that the proposed model not only achieves a very
high accuracy (above 98.7%), but also is very time-efficient
(1.83∼3.37× faster than state-of-the-art sequential models).

Related Work
CSI based human sensing methods mainly rely on data-
driven approaches to learn the complex relationship between
wireless signals and human action (Wang et al. 2019). Tra-
ditional schemes for CSI-based activity recognition firstly
extract discriminative and representative features from mul-
tiple domains and then feed the extracted features into ma-
chine learning models to predict certain activities as a multi-

1Not only the temporal dimension, but the channel dimension
is also continuous due to the continuity of channel frequency.
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Figure 2: Architecture of THAT Model.

class classification problem. Some of the popular techniques
are support vector machines (SVMs) (Wang et al. 2016),
hidden markov model (HMM) (Wang et al. 2015), and k-
nearest neighbor algorithm (kNN) (Ali et al. 2015).

However, handcrafted solutions in previous works re-
quire export-knowledge and are labor-intensive and time-
consuming. Recently, deep architectures contribute to the
significant advancement in the fields of computer vision,
natural language processing, data analysis and so on. Some
researchers propose to use deep learning approaches, which
are able to save that labor-intensive and time-consuming fea-
ture exploration procedure. Yousefi et al.proposed a deep
learning approach, i.e., LSTM, which could hold tempo-
ral state information of activities and help in extraction of
implicit features for similar activities (Yousefi et al. 2017).
Chen et al.argued that the conventional LSTM can only pro-
cess the CSI measurements in the forward direction, which
may lead to some informative features loss (Chen et al.
2018). Based on that, they proposed an attention based bidi-
rectional long short-term memory (ABLSTM) approach for
human activity recognition using WiFi CSI. In (Shi et al.
2019), discriminative features for different human activi-
ties were extracted by LSTM with RNN and then were in-
putted to a softmax classifier for activity recognition. Gao
et al.developed a CSI-based sparse auto-encoder (SAE) net-
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Figure 3: An example of generating ensembled features for
position i via multi-scale convolutional blocks. The top part
shows convolutions with kernel size 1, 3, and 7, and the bot-
tom part shows an adaptive scale attention.

work for device free wireless localization and activity recog-
nition (Gao et al. 2017). Ma et al.(Ma et al. 2018) proposed a
deep learning framework based on convolutional neural net-
work (CNN) for sign gesture recognition using CSI, which
achieved higher accuracy and efficiency than the non-deep-
learning baselines.

Model
Model Overview
The architecture of our THAT model is summarized in Fig-
ure 2. From bottom to top, the first layer inputs the raw CSI
data and pre-processes it into temporal and channel streams.
The MCAT layer extracts discriminative features from the
two-stream. Finally, the two-stream features are aggregated
and fed it into the prediction layer for the final output.
Input and Pre-processing Layer receives the raw CSI da-
ta as inputs and resizes it into temporal stream and channel
stream to be fed as the input of MCAT layer. The raw CSI
data is a set of records {r1, r2, ..., rn}. Each record ri is a
two-dimensional matrix, in which a cell vtc ∈ ri is a real
value indicating the state value of channel c at time t. To
facilitate batch-processing, we perform a timing alignmen-
t2 to make the size of each record identical, i.e., ri has the
same dimensionality as T×C. To be less memory-intensive,
we shrink the size of temporal dimension T by preforming
a mean-pooling on adjacent time slots. The temporal dimen-
sion first (with dimensionality T ×C) data is used as tempo-
ral stream. The channel dimension first (with dimensionality
C×T ) data is used as channel stream, which could be read-
ily fetched by a simple transpose operation.

2We evenly split a time range into time slots and map each row
into their slot according to their time-stamps.

MCAT Layer extracts discriminative features from the t-
wo stream data. This layer manifests a two-tower struc-
ture. Each tower is a stack of H-layer (for temporal stream,
and N -layer for channel stream) multi-scale convolution
augmented transformers. The two towers separately extract
channel-over-time features and time-over-channel features.
Notably, if H = 0 or N = 0, the model is degenerated to a
single-stream model.
Aggregation Layer receives features of the temporal stream
and channel stream and aggregates them into fixed-length
vectors via two separate Convolutional blocks (CNN). Then,
temporal and channel vectors are concatenated to be fed as
the input of the prediction layer.
Prediction Layer is a linear layer with a softmax operation
to compute the probabilities over activity categories.

Multi-scale Convolution Augmented Transformer
(MCAT)
MCAT consists of two sequentially stacked sub-layers: (1)
a multi-head self-attention, and (2) a multi-scale CNN with
an adaptive scale. Each of the two sub-layers is encompassed
by a residual connection (He et al. 2016) (Add) and a layer
normalization (Ba, Kiros, and Hinton 2016) (LayerNorm).

Multi-head Self-attention Module We employ a multi-
head self-attention mechanism (Vaswani et al. 2017) to
generate hidden representations from inputs. Self-attention
could directly integrate the information within the entire se-
quence; thus could fully overcome the long-range dependen-
cy problem of RNN and LSTM.

The self-attention outputs a weighted sum of the values,
where weight assigned to each value is computed by the dot-
product of the query with the corresponding key. Formally,
it is defined as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where dk is the queries and keys dimension, and
√
dk is a

scaling factor that enables smoother gradients. Q ∈ RL×dk ,
K ∈ RL×dk , and V ∈ RL×dv is queries, keys, and values,
respectively. They are generated by letting the input X ∈
RL×din go through three linear projections, namely,

Q = XWQ, K = XWK , V = XWV (2)

where WQ ∈ Rdin×dk , WK ∈ Rdin×dk , and WV ∈
Rdin×dv are projection parameters.

In order to jointly attend to information from different
representation subspaces, the queries, keys and values are
independently projected h times (called h-head) with differ-
ent projection parameters, and the outputs of projections are
concatenated and projected again to result the final output:

MultiHead(Q,K, V ) = [head1; ...;headh]WO, (3)

where headi = Attention(XWi
Q, XWi

K , XWi
V ), and

WO ∈ Rhdv×do is the final projection matrix.
To facilitate residual connections, all sub-layers in the M-

CAT, as well as the input layer, share identical dimension,
i.e., din = h ∗ dv = do.



Multi-scale Convolutional Block with Adaptive Scale At-
tention For HAR tasks, a single temporal point is too s-
mall to be informative. To capture features in a lager scope,
we propose multi-scale convolutional blocks that use differ-
ent scale kernel sizes and adaptively adjust between different
scale by an adaptive scale attention mechanism.

Given a set of kernel sizes J = j1, j2, ..., j|J|, each ker-
nel size is related to a specific scale, e.g., a 30 kernel size
enables the model to capture the pattern within a temporal
range of 30 ms. The output of multiple convolutional blocks
is P = P1, P2, ..., P|J|, where Pi ∈ RL×do is the feature
matrix regarding the i-th kernel size ji. Pi is defined as:

Pi = ReLU(Dropout(BN(Conv(Wji ;X)))) (4)

Eq. 4 consists of four cascaded operations: a convolu-
tion (Conv(·)), a batch normalization (BN(·)) (Ioffe and
Szegedy 2015), a Dropout operation (Dropout(·)) (Srivas-
tava et al. 2014), and a ReLU unit. The core operation is
Conv(Wji ;X), which receives the output features X of
the multi-head self-attention module along with learnable
weights Wji ∈ Rdo×ji×do . The Wji consists of do filters,
and each filter has the size of ji×do, convolving ji adjacent
positions. Notice that we use zero-padding to the two sides
ofX by b(ji−1)/2c to make the resulting feature map have
the same size as L × do. Fig. 3 shows an example of us-
ing scales 1, 3, 7 to capture pattern within different ranges to
yield three features vectors.

Notably, it is unwise to use all those features since some
of them are either redundant or less informative. In order to
adaptively ensemble features at different scales, we propose
an adaptive scale attention mechanism, as shown in Fig. 3.
Formally, the ensembled features P ens are defined as:

P ens = αP =
∑
i

αiPi, (5)

where αi is an attention score of Pi at scale ji. α =<
α1, α2, ..., α|J| > is the vector of attention scores, which
can be computed by:

α = softmax(FFN(P )), (6)

where FFN(·) is a two-layer fully connected feed-forward
neural network:

FFN(Pi) = ReLU(PiWT
1 + b1)WT

2 + b2, (7)

whereW1 ∈ dh × do andW2 ∈ 1 × dh are parameter ma-
trices with a hidden dimension dh, and b1 and b2 are biases.

Preserve Order Information by Gaussian Range En-
coding The order information is vitally important in i-
dentifying reverse actions such as sit down and stand
up.Unfortunately, existing positional encodings methods,
e.g., absolute encodings (Vaswani et al. 2017) or relative
encodings (Shaw, Uszkoreit, and Vaswani 2018) are all de-
fined on a single point: they assign a unique and highly-
discriminative encoding for each single point. As we argued,
a meaningful unit should be a range rather than a single
point. Simply encoding each point will turn out to be a kind
of noise, and lead to generally worse results. Thus, we wish
to use range-based encodings instead.
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Figure 4: An example of generating Gaussian range encod-
ing for one of positions. The final Gaussian range encoding
is the multiplication of the K learnable range embeddings
and normalized PDF vector of K Gaussian distributions.

To make the encoding be flexible to different start/end
blank periods or subtle action speed changes, we propose
a Gaussian range encoding that allows a position belonging
to multiple ranges at the same time, and dynamically adjust
proportions of different ranges during the training.

Without loss of generality, we assume there are K differ-
ent ranges, and use random variable zij to denote the oc-
currence of position i belonging to the j-th range. We as-
sume zij is drawn from a Gaussian distribution N (µj , σj)
(i.e., zij ∼ N (µj , σj)) with probability pj(i). As such,
a position i is a mixture of all K ranges, and the dis-
tribution over ranges are pi =< p1(i)

ζ , p
2(i)
ζ , ..., p

K(i)
ζ >

where ζ is a normalization factor. Given the values vector
v =< v1, v2, ..., vK >, vj is the value of the j-th range. The
expectation of position i is pivT.

All µ, σ, and v are unobserved hidden variables, and thus
they cannot be directly estimated through maximum like-
lihood estimation (MLE). Fortunately, we can implicitly
perform an expectation-maximization by neural networks’
back-propagation. We set µ, σ, and v as randomly initial-
ized free parameters, and dynamically update them with the
training of the whole THAT model.

Formally, let β ∈ RL×K be the normalized weights over
K Gaussian distributions, which is defined as

β = softmax(B), (8)

where B ∈ RL×K is a weight matrix, in which each cell bij
indicates the weight of the j-th Gaussian distributions for
position i. bij is formally defined as:

bij = −
(i− µ(j))2

2σ(j)2
− log(σ(j)), (9)



where µ(j) and σ(j) are learnable parameters that indicate
the mean and standard deviation for j-th Gaussian distribu-
tions, respectively.

Finally, the range-biased stream X ′ is generated by
adding the range encodings to the original stream X:

X ′ = X + βE, (10)

where E ∈ RK×din is a set of learnable range encodings.
We can see that E corresponds to v. β corresponds to pi,
which can be proved that it is equivalent to computing L1-
normalized K univariate Gaussian probability density func-
tions (PDFs).

Fig. 4 shows an illustrative examples of the range encod-
ing. For position 140, we can get the normalized PDF vector
for K different Gaussian distributions, and each element in
the vector indicates the proportion the corresponding range.
The final encoding is the multiplication of the range embed-
dings and their corresponding proportions.

Aggregation Layer
Assume that the features extracted from temporal and chan-
nel streams have the size of T ×dt and C×dc, respectively.
In order to be amenable for the prediction layer, it is neces-
sary to aggregate the features into a small fixed length vector.
The aggregation layer aggregates each feature matrix using
a CNN with a max-pooling operation:

uX = v(WX , X)

= ReLU(Dropout(Pooling(Conv(WX ;X)))),
(11)

where v(·) consists of four cascaded operations: a convo-
lution, a 1-max-over-time pooling operation (Kim 2014), a
Dropout operation, and a ReLU unit. The convolutional lay-
er has w kernel sizes and l filters, and each filter has the size
of h×d (h denotes the kernel size). Further, we use a 1-max-
pooling operation to select the largest value over the feature
map of a particular kernel to capture the most important fea-
ture, and it also helps to shrink the feature size to the kernel
number. The output vector uX has a fixed size 1× wl.

The final feature vector U ∈ R1×(wt+wc) is generated by
concatenating the two output vectors:

U = [uT ;uC ]. (12)

The final feature vector U is fed to the prediction layer to
identify different activities.

Loss Function
The loss function L is a standard cross-entropy loss (CE-
loss), which is defined as:

L = −
|A|∑
i

yilog(f(θ;< XT ;XC >)), (13)

where yi is the ground-truth label, and f(·) denotes the pre-
dicted distribution of the final prediction layer of THAT
model. XT and XC are input temporal and channel streams.
|A| is the number of different activity categories.

Experimental evaluation
In this section, we evaluate the performance of the pro-
posed THAT model on human activity recognition tasks, and
demonstrate its superiority over state-of-the-art models.

Table 1: Statistics of the four evaluation datasets.

Datasets # Rec. # Activ. # Channels. Freq. TX-RX Dist.

Office Room 140 7 30×3 1K Hz 3m
Activity Room 600 6 30×3 500 Hz 4.5m
Meeting Room 600 6 30×3 500 Hz 2m

Activity+Meeting 1200 6 30×3 500 Hz 4.5m/2m

Evaluation Datasets
We used four datasets for evaluation, i.e., Office Room3,
Activity Room, Meeting Room, and Activity+Meeting. The
first dataset is publicly available, and the last three are col-
lected by our prototype system. Each dataset is a set of CSI
matrices along with their corresponding ground-truth labels.
Their brief statistics are summarized in Table 1.

Experimental Settings and Evaluation Metrics
The strides of average pooling were set to 4 for temporal
stream and 3 for channel stream. The number of Gaussian
distributions was K = 10. The µs were evenly distributed
among temporal dimension, namely, beginning from 25 and
ending with 475 with the step 50. All σs were set to 8. The
number of stacks for temporal module wasH = 5 and chan-
nel module was N = 1; The dimensionality din = dk = do
was set to 90 and 500, the number of heads h were set
to 9 and 200, and dv = do/h. The dropout rate was 0.1.
For temporal module and channel module, the kernel sizes
were {1, 3, 5} and {1, 2, 3}, the hidden dimensions dh were
360 and 4000. For temporal and channel module, the ker-
nel numbers w were set to 128 and 16, and the kernel sizes
l were set to {10, 40} and {2, 4}. The dropout rate for this
layer was set to 0.5.

The model was implemented using Pytorch 1.4 with
Python 3.6, and trained on a Nvidia 1080Ti GPU. For op-
timization, we used Adam (Kingma and Ba 2014) with an
initial learning rate 0.001. All weight parameters were ini-
tialized using Xavier (Glorot and Bengio 2010). All datasets
adopt 8:1:1 train/dev/test split. The batch size was 16. We
ran the model for a maximum of 50 epochs and selected the
best on validation set for testing.

Evaluation Metrics Following the common practice in
human activity recognition efforts (Chen et al. 2018), we
adopt recognition accuracy (i.e., the proportion of correct-
ly recognized activities among all predictions) as the metric.

Baselines
We compared with five state-of-the-art models, including t-
wo feature-based models S-RF (Yousefi et al. 2017) and S-
HMM (Wang et al. 2017), and three DL-based models CN-
N, LSTM (Yousefi et al. 2017), and ABLSTM (Chen et al.

3https://github.com/ermongroup/Wifi_Activity_Recognition
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2018). The detailed features extraction process of feature-
based methods can be found in (Yousefi et al. 2017).

Table 2: The recognition accuracy (%) comparison of THAT
and baselines on the four evaluation datasets.

Datasets S-RF S-HMM LSTM CNN ABLSTM THAT

Office Room 75.3 79.7 91.4 96.4 97.1 98.2
Activity Room 80.0 75.0 89.7 94.3 95.6 98.4
Meeting Room 84.7 83.4 90.6 96.2 96.8 99.0

Activity+Meeting 82.6 80.5 90.1 95.4 95.9 98.6

Main Results

Table 2 lists the recognition accuracy of the proposed
THAT model compared with baselines on the four evalua-
tion datasets. From Table 2, we can see that:

i) Our model THAT excels all baselines significantly,
achieving new state-of-the-art results on these datasets. Our
model outperforms the best previous model ABLSTM by
1.1 pts (percentage points), 2.8 pts, 2.2 pts, and 2.7 pts on
the four datasets, respectively. This demonstrates our convo-
lution augmented transformer and the two-stream structure
do truly achieve a better performance on HAR tasks.

ii) The performance gaps between feature-based mod-
els (S-RF and S-HMM), and deep-neural models (LST-
M, CNN, ABLSTM, and THAT) are huge. Among all the
models, S-HMM has the worst performance (on average
79.65% accuracy), and S-RF is only slightly better than S-
HMM (80.65%). For DL-baseed models, LSTM performs
the worst since it suffers greatly from the long-range de-
pendency problem. Being able to adaptively integrate hid-
den states by a attention mechanism, ABLSTM achieved a
better results (around 6 pts) than traditional LSTM model
and became the best among baselines. All DL-based models
achieved at least 10 pts average improvements over feature-
based models. Compared with the best feature-based model,
our model achieved 18.6 pts, 18.4 pts, 14.3 pts, and 16 pt-
s improvements. This is because deep-neural models are of
high expressiveness, and can automatically and adaptively
extract useful features from raw data.

iii) Our model performed equally well on different work-
ing scenarios. On the first three single-scenario datasets, the
difference is only 0.6 pt. For hybrid-scenario dataset Activ-
ity+Meeting, the performance of THAT model is commen-
surately good compared to that under single-scenario and
excels other models significantly. This demonstrates the ef-
fectiveness of THAT on hybrid-scenario. Another observa-
tion is that other DL-based models (i.e., LSTM, CNN, and
ABLSTM) perform slightly worse on Activity Room than
other two. We believe it mainly caused by the TX-RX dis-
tance, which is larger than others in Activity Room (4.5m
v.s. 2m and 3m). It may weaken the received strength and
entail more noise. Thus, our model is of high robustness a-
gainst different working scenarios.

Categorical Performance Comparison
Table 3 shows the categorical performance comparison be-
tween THAT and baselines on the four evaluation datasets.
We can see that our model outperformed almost all base-
lines in identifying any activity on all the four datasets. This
demonstrates our model is effective in capturing general pat-
terns rather than just taking advantages of the “biases” of
some specific activities.

Another observation is that, LSTM and CNN suffer more
difficulties in recognizing reverse activities sit down and s-
tand up because they need position or order information.
Owing to involving an attention mechanism, ABLSTM has
an improvement over LSTM. Our model performs signif-
icantly better than both scope-based model CNN (5.5 pts)
which does not preserve positional information and sequen-
tial model ABLSTM (1.5 pts) that focuses on a fixed scale.
This demonstrates our proposed Gaussian range encoding
and multi-scale CNN block could preserve order informa-
tion and are able to capture multi-scale features.

Ablation Test
we conducted an ablation study to evaluate the contributions
of the proposed Gaussian range encoding, multi-scale CNN,
and the two-stream structure. Table 4 represents the results.
In each test, we ablated a specific component from the ful-
l model. Notably, we made two further testes by filling the
ablated component with an alternative existing method: the
first used positional encoding proposed in (Vaswani et al.
2017) to replace our Gaussian range encoding (i.e., - Gaus-
sian Range Encoding (+ PE)), the second used a position-
wise feed-forward neural network to replace our multi-scale
CNN (i.e., - Multi-scale CNN (+ PFFN)).

From Table 4, we can see that position/order information
does truly help a better recognition. The ablation on Gaus-
sian range encoding incurs roughly 0.5 pt accuracy decline.
Interestingly, the results of using positional encoding (PE)
are even worse than without any positional encoding. This is
caused by the over-positionality that the encodings assigned
to each single position turn out to be an interference.

The ablation on multi-scale CNN incurs an average 1.83
pts accuracy decline, compared with using PFFN, still 1 p-
t performance gap. This demonstrates multi-scale CNN can
capture multi-scale patterns, which is critical for model per-
formances, especially on datasets (e.g., Office Room) that
have a long time range.

Another observation is, compared with single-stream
model, the two-stream structure could effectively improve
the model performance. This indicates the two-stream could
be complementary to improve the recognition accuracy. A-
mong the two streams, the ablation on temporal module in-
curs a bigger decline, which is in accord with common sens-
es that temporal features are more intuitive and important.
From ablation test, we can conclude that all these compo-
nents contribute significantly to the model performance.

Empirical Efficiency
To validate the time-efficiency of our model, we show the
empirical execution time in Table 5. We take Activity Room
as an example, the efficiencies for others are similar.



Table 3: Categorical performance comparison on Office Room, Activity Room, Meeting Room, and Activity+Meeting datasets.

Environment Methods Lie down Fall Pick up Run Sit down Stand up Walk Average

Office Room

S-RF 65.1 82.2 85.5 83.8 59.8 60.7 89.8 75.3
S-HMM 62.9 86.7 89.2 94.2 73.4 59.9 92.0 79.8
LSTM 95.0 92.8 98.1 96.9 82.4 82.2 93.4 91.6
CNN 97.4 97.5 98.0 98.5 90.2 93.8 99.0 96.3

ABLSTM 96.4 98.9 97.6 97.8 94.9 96.5 96.6 97.0
THAT 96.4 99.0 98.9 98.7 97.4 99.9 98.4 98.4

Environment Methods Jump Bow Run Sit down Wave
hand

Walk Average

Activity Room

S-RF 66.1 71.2 88.3 78.2 87.1 88.8 80.0
S-HMM 36.8 47.9 92.7 90.8 89.8 91.7 75.0
LSTM 88.1 81.8 90.6 90.9 94.7 91.9 89.7
CNN 94.1 90.4 93.8 96.5 97.2 93.8 94.3

ABLSTM 93.4 93.9 95.5 96.6 96.5 97.9 95.6
THAT 98.8 98.7 96.7 98.7 98.7 98.9 98.4

Meeting Room

S-RF 84.6 88.7 81.1 82.1 81.4 90.5 84.7
S-HMM 67.1 77.2 89.1 82.8 90.6 93.6 83.4
LSTM 89.6 87.2 90.5 91.6 93.7 90.7 90.6
CNN 96.2 92.2 95.8 98.4 98.3 96.2 96.2

ABLSTM 96.5 98.2 97.1 98.5 92.8 97.6 96.8
THAT 99.3 99.8 97.3 99.7 99.2 98.4 99.0

Activity+Meetinm

S-RF 70.9 82.8 88.7 85.6 81.7 85.9 82.6
S-HMM 50.9 66.8 88.7 88.8 89.7 97.8 80.5
LSTM 78.8 91.9 96.9 92.1 89.2 91.7 90.1
CNN 93.1 95.2 97.3 95.9 97.1 93.6 95.4

ABLSTM 93.6 94.5 97.1 97.4 95.8 97.1 95.9
THAT 99.0 99.2 97.4 99.6 97.6 98.7 98.6

Table 4: Ablation study results compared with the full THAT model.

Model
Office Room Activity Room Meeting Room Activity+Meeting

Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆ Accuracy (%) ∆

THAT 98.2 - 98.4 - 99.0 - 98.6 -
- Gaussian Range Encoding 97.9 -0.4 97.9 -0.5 98.5 -0.5 98.2 -0.4
- Gaussian Range Encoding (+ PE (Vaswani et al. 2017)) 91.1 -7.2 84.3 -14.1 90.3 -8.7 87.8 -10.8
- Multi-scale CNN 95.3 -3.0 97.4 -1.0 97.0 -2.0 97.3 -1.3
- Multi-scale CNN (+ PFFN) 97.2 -1.1 97.2 -1.2 98.1 -0.9 97.7 -0.9
- Temporal Module 92.0 -6.3 95.2 -3.2 97.5 -1.5 95.9 -2.7
- Channel Module 93.8 -4.5 97.7 -0.7 98.3 -0.7 98.0 -0.6

Table 5: Empirical execution time of all models on Activity
Room dataset.

Models Training(Sec) Testing(Sec) Throughput(Recs/Sec)

S-RF 6.09 0.016 31250
S-HMM 0.029 0.22 2272.72
LSTM 5168.86 4.39 113.9
CNN 1474.76 1.12 446.43
ABLSTM 11352.82 6.77 73.86
THAT 2996.75 1.55 332.58

From Table 5, we can see that all DL-based models
(i.e., LSTM, CNN, ABLSTM, and THAT) are more time-
consuming than traditional machine learning models (i.e.,
S-RF, S-HMM). Our THAT model (and CNN) has a better
time-efficiency than sequential models LSTM and ABLST-
M, since most of the computations (e.g., multi-head self-
attention module, all convolution modules) can be comput-
ed in parallel. The high time costs in training phase would

not be a big issue since it can be computed offline. In test-
ing phase, our model is 3.37× faster than ABLSTM, 1.83×
faster than LSTM, and competitive to CNN. The through-
put rate of THAT is 332.58 Recs/Sec, indicating each record
can be inferred within 4ms. Considering the window size of
each record is 4 seconds, the time cost of our model could
be fully ignored. This demonstrates our model is not only
of high effectiveness, but also efficient enough for real-time
WiFi-based human activity recognition.

Conclusion
In this paper, we propose a novel network structure for
device-free HAR tasks. Our model uses a two-stream lay-
out to extract both time-over-channel and channel-over-time
features, and uses Gaussian range encoding and a multi-
scale convolution block to capture range-based patterns. The
experimental results show that, compared with the best pre-
vious model ABLSTM, our model delivers an average 2.2
pts accuracy improvement, while being 1.83∼3.37× faster.
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